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 Statistically, Android is the most targeted mobile platform when it comes to 

malicious application. As a result, Android malware detection has become one of the 

sizing topics in the domain of mobile security. As the researchers focusing on 

developing a new approach to detect and fight Android malware, there are always 

a recent report exhibiting cases of Android malware. Multiple motivations cause 

mobile malware writers to continuously develop an application with malware. Their 

intentions are to gain access to the private network and to collect sensitive data. 

This paper categories type of mobile malware. Furthermore, the types of mobile 

malware that often attacks android’s users are discussed. Then, fundamental 

techniques usually implement to detect mobile malware are deliberated. Basic 

techniques such as Static, Dynamic and Hybrid analysis are explained in the section. 

Finally, open issues on detecting and evaluating Android designed malware 

presented as a guideline for future research directions. 

© 2021 UPNM Press. All rights reserved. 
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Introduction 

Smartphone could be used to perform many functions similar to PCs. In 2010, the smartphone has been 
surpassing PCs in terms of its shipments. Personalisation and powerful performance factors make 
smartphones, tablets, and other mobile platforms become ubiquitous of consumer-electronic devices. After 
iPhone penetrate the market back in 2007, most of the smartphone was designed with a capacitive screen 
that supports multi-touch gestures in thin, slate-like form factor (Falaki et al., 2010). Its innovation makes 
users be able to access the Internet wirelessly, offered with an ability to download or purchase applications, 
use cloud or synchronise cloud storage, access to virtual assistants, and as well as making a payment.   

Technically, not every smartphone offers the same hardware features. The features are defined by 
the technologies that own by the smartphone company. Examples of technologies in smartphones are 
including face recognition or fingerprint authentication system, various sensors, NFC (Near Field 
Communication), etc. Due to the different technologies used, the Operating System (OS) is responsible to 
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provide a proper control of it. OS in the smartphone is used to control or perform functions as booting, 
memory management, loading and execution, data security, risk management, etc. Different smartphone 
OS is using a different approach to run an application or perform a technological function. Latest and 
popular smartphone OS can be classified into 5 different categories. The categories are Android, Apple iOS, 
Microsoft Window Phone and Blackberry.  

Recently, Google reports that the Android operating system has reached a breakthrough with more 
than 2.5 billion monthly active Android user, exceeding the number of Apple iOS users by 1.1 billion  
(Tung, 2019). One of the prime contributing factors to the popularity of Android is the user’s growth. 
Android is using an open-source OS with a maximum global download application in the market. However, 
Android's popularity and its attractive environment not only attract users' attention, but it also has 
encouraged malware authors to develop malicious applications (or apps) to penetrate the security of 
mobile devices.  
 
 
Category of Mobile Malware 
 
Malicious software or also known as malware is any software that developed with malicious intention. 
Mobile malware could be developed to disrupt normal functioning, exploit access control, collect sensitive 
information, display unwanted ads, or control the mobile without the user’s knowledge (Al-khatib & 
Hammood, 2017). There are many conventional types of mobile malware that existed since the 
introduction of smartphones. Therefore, Table 1 shows a summary of several types of mobile malware with 
its behaviour. 
 
Table 1: Category of Malware with Its Threat and Examples (Lachtar et al. 2019; Sigler and Trustwave 

2018) 
Category Threats Example 

Trojan A type of malware that shows itself as a benign app to attract 
the user to download and install to the device. It will perform 
a malicious act on the background. Trojan will try to gain 
remote access to steal, modified, or delete files. Trojan also 
spy on users’ activities either by monitoring the screen, look 
up for device logs, etc. 

DownAPK, GantSpy, 
DroidKungFu 

Mobile Worm  The worm is capable to duplicate and spreading itself from 
device to device through the network. Worm could destroy 
the host network by utilising bandwidth.  

Cabir, Feakk, Mobler, 
InSpirit, Ikee.B 

Mobile Virus The mobile virus spread by attaching itself to an app. Phone 
infected by the virus may be exposed to the threat of 
information stealing, network issue, etc.  

Dust, Lasco, 
Cardblock, CardTrap, 
and Crossover  

Ransomware Ransomware encrypts files of infected mobile and will not 
release the resources until some amount of ransom was made 
(Lachtar, Ibdah, and Bacha, 2019).   

Ransom.BE78, 
Simplocker 

Adware Without permission from the user, adware bundled with 
other apps and deliver ads. Adware could quietly operate in 
the background and trawling through private information, 
such as username, password, contact, etc. 

UAPush 

Spyware Spyware will keep an eye on any activities of infected mobile 
devices. These activities consist of collecting key log, screen 
watching, and stealing account information. Spyware 
attaches itself to a benign application or Trojan to exploit the 
vulnerability.  

Zitmo, Acallno, 
FlaxiSpy 

Mobile Crypto-
jacking 

Crypto-jacking is when mobile technology was used to mine 
bitcoin, secretly. Crypto-jacking runs behind the popular app. 
Some secretly mining while streaming a video. Some secretly 
mining cryptocurrency while soccer video. 

WebCobra, 
HiddenMiner  

 
Malware is evolving to the point where it is more sophisticated and harder for the user to notice. This 
section has shown that mobile threats are increasing rapidly, and its attack is focusing on a specific target. 
Therefore, there is important to have efficient detection of malware to stop the malware attack. 
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Android Malware Detection Strategies 
 
There are multiple approaches used by researchers to analyse Android malware. The detection approaches 
included are static, dynamic, and hybrid techniques (Tong & Yan, 2017). These techniques are available to 
detect malicious intentions to the host, which is a mobile phone. Therefore, a different method based on 
detection techniques and its effectiveness and weakness will be discussed. 
 

i. Static Analysis 
 

Static analysis detection was done when application inspection is made without the execution of the 
program. The static technique relies on the application source code to differentiate between 
malware and benign apps. Hence, code coverage was maximised as this technique depends on the 
analysis of the source code. There are multiple methods developed in detecting malicious malware 
using static analysis. There is permission analysis, which is among popular techniques. An example 
of permission-based static analysis is DroidDetective. DroidDetective detecting malware by 
comparing several requested permissions in a benign and malicious application. To run the 
application properly, the developer needs to declare permission in androidmanifest.xml. Showing 
96% detection rate, DroidDetective reveals permission, such as WRITE_SMS, RECEIVE_SMS, 
SEND_SMS and READ_SMS mostly invited by malware, but not in benign applications  
(Liang & Du, 2014). By exploiting and asking for these permissions, a malicious application could 
send a premium-rate message without interference from the users, therefore, cause financial loss.  
 

The permission-based static analysis could give a high detection rate, but in some cases, it also 
could result in a high false-positive rate. Moreover, other researchers use behaviour of data flow in 
determining the malicious application. FlowDroid is a detection model that analyse the call backs 
invoked by the Android framework. To reduce false alarm, FlowDroid properly handles call backs 
whereas analysis on data flow, context, and objects. FlowDroid has been successfully detecting 
malware? (Arzt et al., 2018). There were also several approaches to static analysis of Android 
malware detection differing in runtime, scope, and focus. Still, most of the objective of developing a 
malware detection method is to reduce missed leak and false positive. Static analysis helps in 
revealing apps with malware before actual execution. However, static analysis is ineffective to detect 
malware with code obfuscation and dynamic code loading. Moreover, this technique also impractical 
in detecting zero-day malware (Gandotra et al., 2016). Thus, another technique is needed to 
overcome the issues. 

 
ii. Dynamic Analysis  
 
Dynamic analysis includes monitoring various run-time activities such as registry changes, network 
activities, or data flow tracking. This was done when the application is executed in a controlled 
environment. The purpose of dynamic analysis is to find an analysis of the behaviour of the apps 
while it is executed. An example of a method that uses dynamic analysis is TaintDroid that is 
introduced by Enck et al. (2019) TaintDroid tracks the flow of privacy-sensitive data through a third-
party application. It assumes that downloadable third-party applications are not trustable. This 
method will classify misbehave application by logging the tainted data transmitting over the 
network or leaving the system. It will record data’s labels, the application that responsible for 
transmitting the data, and data’s destination (Arzt et al., 2018). This information will give users and 
security service a greater insight on what mobile applications are doing and potentially could 
identify the malicious application.  

 
On the other hand, Arzt et al. (2018)analyse the network traffic by generating the URL table 

and logs all attempts made by application to remote servers. Each log in the URL table will preserve 
the application identification and URL that the application contacted. By comparing logs with 
reliable and comprehensive domain blacklist, this method could detect applications that commute 
with malicious domain. Chen et al. (2018) combine technique taken by Zaman et al. with a machine 
learning method to identify malicious network behaviour. They capture traffic from over 5,560 
mobile malware samples. The accuracy rate of the detection model could reach up to 99.9%. 
However, this method is server-based analytics. Server-based analytics is impractical to find a newly 
generated malware that usually initiated at app runtime during its execution. Moreover, malware 
samples taken for experimentation or proof of concept for this method are from Drebin Project. The 
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samples were collected over the period from August 2010 to October 2012, which is infeasible for 
today’s malware technology.  

 
Although this analysis is more effective compared to the static analysis, these analyses are 

time and resources consuming. Moreover, executing the malicious software in control and virtual 
environment may yield different results compare with executing the software in the actual 
environment. This is because some malicious software is designed to trick the analyst or sometimes 
its behaviour may only trigger under certain conditions. 

 
iii. Hybrid Analysis 

 

Due to the different effects/behaviours of both malware detection techniques mentioned above, 
therefore, features on both static and dynamic detection techniques need to be integrated to improve 
the detection of Android’s malware. An in-device malware detection introduces by  Martinelli et al. 
(2017) combines static and dynamic analysis methods. This method analyses n-grams matching for 
static analysis whilst dynamic analysis is based on multi-level monitoring of devices, apps, and user 
behaviour. Thousands of samples were processed with detection accuracy that reaches up to 99.7% 
(Arzt et al., 2018). Besides, there is a novel 3-level hybrid malware detection named SAMADroid for 
the Android operating system. This method combines three (3) different levels of detection, which 
are static and dynamic analysis, local and remote hosts, and machine learning intelligence.  

 
At level 1, in the static analysis phase, static features are extracted from the manifest file. The 

static features are grouped by request hardware components, requested permission; intent filters, 
suspicious API calls, and restricted API calls. Further, in the dynamic phase, the application’s runtime 
behaviour is analysed. The system call was analysed to overcome the limitation of static analysis. 
Next at level two, on the localhost, the dynamic analysis was performed. Monkey Runner was used 
to generating non-realistic random input events. All input and behaviour were sent to a remote 
server, then it will be analysed.  At level three, machine learning was implemented to analysed 
behaviour in the remote host, thus keeping all the training set in a server; therefore, contribute to a 
big data resource for machine learning. Machine learning intelligence will perform the detection of 
malicious behaviour of unknown apps and correctly classify them (Arzt et al., 2018). While other 
malware detection tools scan all the application either running on the background or not, SAMADroid 
only scans and analyse the user application and does not scan the system application. Approach 
taken by SAMADroid is an example of a dynamic malware detection technique where different 
approaches combined in detecting malicious applications.  
 
This section has briefly explained the methods taken by researchers in detecting Android malware. 
Researchers have developed numerous methods, which are decent in detecting Android malware. 

 
 
Android Malware Detection Challenges  
 
Recently, there is malware known as xHelper slowly infecting more than 32,000 devices in August 2019 
(Cimpanu, 2019). This malware is near impossible to be removed, as it is self-reinstalled even after the 
infected device was factory reset. In some cases, even xHelper service has been removed and the user has 
disabled the ‘Install apps from unknown sources’ option, the setting kept turning itself back on and make 
the device re-infected after a minute being cleaned (Schneier, 2019). Main target users are from India, the 
United States, and Russia, xHelper could not be launched manually as there is no icon visible on the 
launcher. Instead, the malware was launched when there any external events, such as turning on or off the 
power supply, rebooting the device, or when there if any apps being installed or uninstalled. Upon 
successful infecting the victim’s device, the additional payload includes droppers, clickers, and rootkits that 
may be downloaded to further compromise the device (McAfee, 2020). Further, once the device is infected, 
xHelper will find a way to use a process inside the Google Play Store application to trigger the re-install 
operation. xHelper APK will find a way to hide in special directories that it creates when exploiting the 
device, therefore, surviving factory resets.  

 
Unlike apps, directory and files will stay in the device even factory reset is performed  

(Cimpanu, 2020). xHelper is known as a zero-day type of malware. It takes nearly about 10 months for the 
researcher to find out how it exploits smartphones and its reliable method of cleaning a smartphone 
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infected by xHelper. Detection of new malicious application groups has become challenging as new stealth 
techniques and encapsulation methods to evade detection tools. Existing mobile antivirus solutions need 
to be improved to detect and combat highly sophisticated malware. From the review of open literature, it 
found that researchers have focused on improving detection methods to detect zero-day malware in the 
malicious application.  

 
Grace et al. (2012) introduce RiskRanker in 2012 claimed as a first accurate zero-day android 

malware detection. Furthermore, RiskRanker is the first system that performs large-scale security risk 
analysis for zero-day malware detection at that time. They proposed a proactive scheme with a two-order 
risk analysis. In the first-order analysis, RiskRanker will construct and analysis high-risk apps and medium 
risk apps. They will flag high-risk apps if it carries the attack code that exploits a vulnerability in the OS 
kernel or privilege daemons to obtain superuser privilege. Next, RiskRanker will report medium risk apps 
if the apps secretly monetized users or upload undeniably private information to the remote server. Next, 
in the second-order analysis, they will collect and correlate various signs or patterns of behaviour among 
apps with malware. This was done due to mitigating the weakness from first-order analysis, which mainly 
designed to handle non-obfuscated, encrypted, or dynamically changes payload malicious apps. To 
demonstrate the effectiveness and RiskRanker detection accuracy, the researchers collected in total 
104,874 distinct apps, from 15 different Android markets, one from the official marketplace and others 
from alternative marketplaces. Based on the evaluation, RiskRanker has successfully uncovered 718 
malicious apps in 29 malware families, including 322 zero-day malware. However, this type of detections 
has some limitations. Their root exploitation detection scheme depends on signatures, which could only 
detect known exploits and ignore encrypted or obfuscation exploit during first-order risk analysis. Further, 
at second order risk analysis, their prototype only considers the javax.crypto libraries for convenient 
encryption detection, while there are multiple types of libraries that could be used by malware writers to 
defeat the detection method taken by RiskRanker.  

 
On the other hand, instead of performing analysis to find malicious behaviour and compare it to 

other apps to classify malware apps; Zolotukhin et al. (2014) perform an analysis of the behaviour of 
opcode in benign apps. The executable file of the benign apps is analysed to extract operation code 
sequences. Then, n-gram analysis was employed to the sequences of operation code to discover essential 
features. Next, the behaviour model was build based on the finding of the analysis. Finally, the model was 
used to make a comparison to detect malicious executable of other new files. Operational code or also 
known as opcode is a machine language instruction that specifies the type of operation to be performed 
(Kang et al., 2016). Opcode will reveal a significant difference between legitimate apps and malicious apps, 
which is the right approach to detect malware based on executable files only. To extract features from each 
of the opcode sequences, the n-gram model was applied. N-gram model is widely used in statistical natural 
language processing. N-gram word model is applied to transform all opcode sequences to the n-opcodes 
sequence. For example, this opcode sequence “DEC POP NOP ADD ADD ADD,” when transforming to 2-
opcodes will become” DEC POP”,” POP NOP” and ”NOP ADD” and two in the position corresponding to ”ADD 
ADD”. This sequence which known as feature matrix will be analysed to find anomalies, therefore, 
implemented to build a benign software model. To proof the concept, the researchers divided two sets of 
files. The files were divided into a training set of 600 files in including 22 infected files and second set for a 
testing set, which includes 400 files with 25 infected files. Moreover, infected files in the testing set belong 
to five malwares, which is not in the training set, thus it will refer to zero-day malware apps. The motivation 
is to detect the five malwares in the training set when the benign software model executed to the training 
set. Once executed, the model successfully detects numbers of malware in the training sets, hence proofing 
that this method could be implemented in identifying zero-day malware attacks (Zolotukhin & Hämäläinen, 
2014).  

 
This technique considers all benign opcode features and builds maximum 2-opcodes sequence; it 

takes a long time to train the data set to build a benign software model. Therefore, this model is impractical 
to apps with high instruction, as it will be resulting in big numbers of opcode sequences.  
Gandotra et al. (2017) show that selecting features obtained from both methods help in shortening the time 
taken to build a classification model thus hindering the early detection of malware. The project aims to 
prove that the features selection process would help to improve model-building time without 
compromising the accuracy of the malware detection system. They illustrated that features selection 
benefits in shortening the time taken to build classification model, thus may help to overcome the issue 
arise from Zolotukhin et al. (2014) model, but the discussion on the effectiveness of detecting zero-day 
malware with features selection was vaguely discussed.  
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Additionally, Tong and Yan propose a method that dynamically monitors and collects execution data 
of apps to create both malware and benign pattern set. The malware detection system was done at the 
server. The execution data are based on the individual system calls and sequential system calls, which are 
related to the access of files and networks. If the parameters of the data were chosen properly, the detection 
accuracy of the proposed method could reach up to 91.76% with FPR lower than 4%. To proof the concept 
that this method could detect a new type of malware, they collect system call patterns of apps with new 
malware and compare the patterns in both malicious and benign pattern sets. Furthermore, the detection 
accuracy of this method could be further improved, as there is the implementation of self-learning to the 
pattern sets (Tong & Yan, 2017). 

 
However, this method does not support real-time detection due to the big data processing and new 

call patterns of newly detected malware. Privacy of data extracted from the apps to the server also not 
considered. The data extracted and stored were large, thus need big storage to support. There are multiple 
methods taken by researchers to detect new types of malware. In addition, the method for zero-day 
malware detection and analysis are still imperfect, ineffective, and incomprehensive. Since the Android 
application is available not only at the official store, but there are also many security and privacy problems 
persuaded. Today, malware detection mechanisms are still incapable to deal with constantly appearing 
new types of neither malware, such as xHelper malware nor the existing ones, until an instant of this 
malware has damaged several mobile phones. Therefore, it is important to have a new detection method 
to detect malware unseen previously, in real-time environments with less consumption of resources in 
terms of memory consumption, use of storage and CPU processing.   
 

This section highlighted some challenges and issues in the perspective of detecting Android 
malware. In summary, challenges and issues that should be considered as future research direction are as 
follows: 
 

i. New detection technique to detect the zero-day type of malware. 
ii. New detection technique to identify mobile malware in real-time. 
iii. Datasets with updated malware family for evaluating malware detection technique. 
iv. New mobile malware detection technique with the clear implementation of data privacy. 

 
 
Conclusion  
 
This work provides state-of-the-art discussions on detecting and evaluating malware focusing on attacking 
smartphones with Android operating system and its challenges. To do so, this paper has categorized the 
type of mobile malware such as Trojan, Adware, crypto jacking, etc. This paper also highlighted most 
popular and fundamental techniques usually used for detecting malware either in the smartphone that 
used Android or iOS operating system which are through dynamic analysis, static analysis, and hybrid 
analysis. As a side of contribution, newly type of Android malware is presented and its challenges to detect 
and evaluate are (such as detection and evaluation/assessment) are addressed. In the end, this paper 
suggested the need of new detection technique to detect the zero-day type of malware and detection 
technique to identify Android mobile malware in real-time with a clear implementation of user’s data 
privacy. Moreover, for research purposes of this fast-evolving research, the dataset of with updated 
malware family also required to evaluating any new detection technique. 
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