
Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

38

Zulfaqar J. Def. Sci. Eng. Tech. Vol.4 Issue 1 (2021) 38-44

ZULFAQAR Journal of
Defence Science, Engineering & Technology

Journal homepage: https://zulfaqar.upnm.edu.my/

ANDROID DESIGNED MALWARE DETECTION CHALLENGES: A FUTURE RESEARCH
DIRECTION

Afiqah Mohammad Azaharia,*, Arniyati Ahmada, Syarifah Bahiyah Rahayua, Nur Diyana Kamarudina,
Mohd Hazali Mohamed Halipa

a Cyber Security Centre, National Defence University of Malaysia

*Corresponding author: afiqah.azahari@upnm.edu.my

ARTICLE INFO

ABSTRACT

Article history:

Received

14-05-2020

Received in revised

30-10-2020

Accepted

10-02-2021

Available online

30-06-2021

 Statistically, Android is the most targeted mobile platform when it comes to

malicious application. As a result, Android malware detection has become one of the

sizing topics in the domain of mobile security. As the researchers focusing on

developing a new approach to detect and fight Android malware, there are always

a recent report exhibiting cases of Android malware. Multiple motivations cause

mobile malware writers to continuously develop an application with malware. Their

intentions are to gain access to the private network and to collect sensitive data.

This paper categories type of mobile malware. Furthermore, the types of mobile

malware that often attacks android’s users are discussed. Then, fundamental

techniques usually implement to detect mobile malware are deliberated. Basic

techniques such as Static, Dynamic and Hybrid analysis are explained in the section.

Finally, open issues on detecting and evaluating Android designed malware

presented as a guideline for future research directions.

© 2021 UPNM Press. All rights reserved.

Keywords:

Android, mobile

malware, malware

detection, malware type,

security threats

e-ISSN: 2773-5281

Type: Article

Introduction

Smartphone could be used to perform many functions similar to PCs. In 2010, the smartphone has been
surpassing PCs in terms of its shipments. Personalisation and powerful performance factors make
smartphones, tablets, and other mobile platforms become ubiquitous of consumer-electronic devices. After
iPhone penetrate the market back in 2007, most of the smartphone was designed with a capacitive screen
that supports multi-touch gestures in thin, slate-like form factor (Falaki et al., 2010). Its innovation makes
users be able to access the Internet wirelessly, offered with an ability to download or purchase applications,
use cloud or synchronise cloud storage, access to virtual assistants, and as well as making a payment.

Technically, not every smartphone offers the same hardware features. The features are defined by
the technologies that own by the smartphone company. Examples of technologies in smartphones are
including face recognition or fingerprint authentication system, various sensors, NFC (Near Field
Communication), etc. Due to the different technologies used, the Operating System (OS) is responsible to

Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

39

provide a proper control of it. OS in the smartphone is used to control or perform functions as booting,
memory management, loading and execution, data security, risk management, etc. Different smartphone
OS is using a different approach to run an application or perform a technological function. Latest and
popular smartphone OS can be classified into 5 different categories. The categories are Android, Apple iOS,
Microsoft Window Phone and Blackberry.

Recently, Google reports that the Android operating system has reached a breakthrough with more
than 2.5 billion monthly active Android user, exceeding the number of Apple iOS users by 1.1 billion
(Tung, 2019). One of the prime contributing factors to the popularity of Android is the user’s growth.
Android is using an open-source OS with a maximum global download application in the market. However,
Android's popularity and its attractive environment not only attract users' attention, but it also has
encouraged malware authors to develop malicious applications (or apps) to penetrate the security of
mobile devices.

Category of Mobile Malware

Malicious software or also known as malware is any software that developed with malicious intention.
Mobile malware could be developed to disrupt normal functioning, exploit access control, collect sensitive
information, display unwanted ads, or control the mobile without the user’s knowledge (Al-khatib &
Hammood, 2017). There are many conventional types of mobile malware that existed since the
introduction of smartphones. Therefore, Table 1 shows a summary of several types of mobile malware with
its behaviour.

Table 1: Category of Malware with Its Threat and Examples (Lachtar et al. 2019; Sigler and Trustwave

2018)
Category Threats Example

Trojan A type of malware that shows itself as a benign app to attract
the user to download and install to the device. It will perform
a malicious act on the background. Trojan will try to gain
remote access to steal, modified, or delete files. Trojan also
spy on users’ activities either by monitoring the screen, look
up for device logs, etc.

DownAPK, GantSpy,
DroidKungFu

Mobile Worm The worm is capable to duplicate and spreading itself from
device to device through the network. Worm could destroy
the host network by utilising bandwidth.

Cabir, Feakk, Mobler,
InSpirit, Ikee.B

Mobile Virus The mobile virus spread by attaching itself to an app. Phone
infected by the virus may be exposed to the threat of
information stealing, network issue, etc.

Dust, Lasco,
Cardblock, CardTrap,
and Crossover

Ransomware Ransomware encrypts files of infected mobile and will not
release the resources until some amount of ransom was made
(Lachtar, Ibdah, and Bacha, 2019).

Ransom.BE78,
Simplocker

Adware Without permission from the user, adware bundled with
other apps and deliver ads. Adware could quietly operate in
the background and trawling through private information,
such as username, password, contact, etc.

UAPush

Spyware Spyware will keep an eye on any activities of infected mobile
devices. These activities consist of collecting key log, screen
watching, and stealing account information. Spyware
attaches itself to a benign application or Trojan to exploit the
vulnerability.

Zitmo, Acallno,
FlaxiSpy

Mobile Crypto-
jacking

Crypto-jacking is when mobile technology was used to mine
bitcoin, secretly. Crypto-jacking runs behind the popular app.
Some secretly mining while streaming a video. Some secretly
mining cryptocurrency while soccer video.

WebCobra,
HiddenMiner

Malware is evolving to the point where it is more sophisticated and harder for the user to notice. This
section has shown that mobile threats are increasing rapidly, and its attack is focusing on a specific target.
Therefore, there is important to have efficient detection of malware to stop the malware attack.

Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

40

Android Malware Detection Strategies

There are multiple approaches used by researchers to analyse Android malware. The detection approaches
included are static, dynamic, and hybrid techniques (Tong & Yan, 2017). These techniques are available to
detect malicious intentions to the host, which is a mobile phone. Therefore, a different method based on
detection techniques and its effectiveness and weakness will be discussed.

i. Static Analysis

Static analysis detection was done when application inspection is made without the execution of the
program. The static technique relies on the application source code to differentiate between
malware and benign apps. Hence, code coverage was maximised as this technique depends on the
analysis of the source code. There are multiple methods developed in detecting malicious malware
using static analysis. There is permission analysis, which is among popular techniques. An example
of permission-based static analysis is DroidDetective. DroidDetective detecting malware by
comparing several requested permissions in a benign and malicious application. To run the
application properly, the developer needs to declare permission in androidmanifest.xml. Showing
96% detection rate, DroidDetective reveals permission, such as WRITE_SMS, RECEIVE_SMS,
SEND_SMS and READ_SMS mostly invited by malware, but not in benign applications
(Liang & Du, 2014). By exploiting and asking for these permissions, a malicious application could
send a premium-rate message without interference from the users, therefore, cause financial loss.

The permission-based static analysis could give a high detection rate, but in some cases, it also
could result in a high false-positive rate. Moreover, other researchers use behaviour of data flow in
determining the malicious application. FlowDroid is a detection model that analyse the call backs
invoked by the Android framework. To reduce false alarm, FlowDroid properly handles call backs
whereas analysis on data flow, context, and objects. FlowDroid has been successfully detecting
malware? (Arzt et al., 2018). There were also several approaches to static analysis of Android
malware detection differing in runtime, scope, and focus. Still, most of the objective of developing a
malware detection method is to reduce missed leak and false positive. Static analysis helps in
revealing apps with malware before actual execution. However, static analysis is ineffective to detect
malware with code obfuscation and dynamic code loading. Moreover, this technique also impractical
in detecting zero-day malware (Gandotra et al., 2016). Thus, another technique is needed to
overcome the issues.

ii. Dynamic Analysis

Dynamic analysis includes monitoring various run-time activities such as registry changes, network
activities, or data flow tracking. This was done when the application is executed in a controlled
environment. The purpose of dynamic analysis is to find an analysis of the behaviour of the apps
while it is executed. An example of a method that uses dynamic analysis is TaintDroid that is
introduced by Enck et al. (2019) TaintDroid tracks the flow of privacy-sensitive data through a third-
party application. It assumes that downloadable third-party applications are not trustable. This
method will classify misbehave application by logging the tainted data transmitting over the
network or leaving the system. It will record data’s labels, the application that responsible for
transmitting the data, and data’s destination (Arzt et al., 2018). This information will give users and
security service a greater insight on what mobile applications are doing and potentially could
identify the malicious application.

On the other hand, Arzt et al. (2018)analyse the network traffic by generating the URL table

and logs all attempts made by application to remote servers. Each log in the URL table will preserve
the application identification and URL that the application contacted. By comparing logs with
reliable and comprehensive domain blacklist, this method could detect applications that commute
with malicious domain. Chen et al. (2018) combine technique taken by Zaman et al. with a machine
learning method to identify malicious network behaviour. They capture traffic from over 5,560
mobile malware samples. The accuracy rate of the detection model could reach up to 99.9%.
However, this method is server-based analytics. Server-based analytics is impractical to find a newly
generated malware that usually initiated at app runtime during its execution. Moreover, malware
samples taken for experimentation or proof of concept for this method are from Drebin Project. The

Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

41

samples were collected over the period from August 2010 to October 2012, which is infeasible for
today’s malware technology.

Although this analysis is more effective compared to the static analysis, these analyses are

time and resources consuming. Moreover, executing the malicious software in control and virtual
environment may yield different results compare with executing the software in the actual
environment. This is because some malicious software is designed to trick the analyst or sometimes
its behaviour may only trigger under certain conditions.

iii. Hybrid Analysis

Due to the different effects/behaviours of both malware detection techniques mentioned above,
therefore, features on both static and dynamic detection techniques need to be integrated to improve
the detection of Android’s malware. An in-device malware detection introduces by Martinelli et al.
(2017) combines static and dynamic analysis methods. This method analyses n-grams matching for
static analysis whilst dynamic analysis is based on multi-level monitoring of devices, apps, and user
behaviour. Thousands of samples were processed with detection accuracy that reaches up to 99.7%
(Arzt et al., 2018). Besides, there is a novel 3-level hybrid malware detection named SAMADroid for
the Android operating system. This method combines three (3) different levels of detection, which
are static and dynamic analysis, local and remote hosts, and machine learning intelligence.

At level 1, in the static analysis phase, static features are extracted from the manifest file. The

static features are grouped by request hardware components, requested permission; intent filters,
suspicious API calls, and restricted API calls. Further, in the dynamic phase, the application’s runtime
behaviour is analysed. The system call was analysed to overcome the limitation of static analysis.
Next at level two, on the localhost, the dynamic analysis was performed. Monkey Runner was used
to generating non-realistic random input events. All input and behaviour were sent to a remote
server, then it will be analysed. At level three, machine learning was implemented to analysed
behaviour in the remote host, thus keeping all the training set in a server; therefore, contribute to a
big data resource for machine learning. Machine learning intelligence will perform the detection of
malicious behaviour of unknown apps and correctly classify them (Arzt et al., 2018). While other
malware detection tools scan all the application either running on the background or not, SAMADroid
only scans and analyse the user application and does not scan the system application. Approach
taken by SAMADroid is an example of a dynamic malware detection technique where different
approaches combined in detecting malicious applications.

This section has briefly explained the methods taken by researchers in detecting Android malware.
Researchers have developed numerous methods, which are decent in detecting Android malware.

Android Malware Detection Challenges

Recently, there is malware known as xHelper slowly infecting more than 32,000 devices in August 2019
(Cimpanu, 2019). This malware is near impossible to be removed, as it is self-reinstalled even after the
infected device was factory reset. In some cases, even xHelper service has been removed and the user has
disabled the ‘Install apps from unknown sources’ option, the setting kept turning itself back on and make
the device re-infected after a minute being cleaned (Schneier, 2019). Main target users are from India, the
United States, and Russia, xHelper could not be launched manually as there is no icon visible on the
launcher. Instead, the malware was launched when there any external events, such as turning on or off the
power supply, rebooting the device, or when there if any apps being installed or uninstalled. Upon
successful infecting the victim’s device, the additional payload includes droppers, clickers, and rootkits that
may be downloaded to further compromise the device (McAfee, 2020). Further, once the device is infected,
xHelper will find a way to use a process inside the Google Play Store application to trigger the re-install
operation. xHelper APK will find a way to hide in special directories that it creates when exploiting the
device, therefore, surviving factory resets.

Unlike apps, directory and files will stay in the device even factory reset is performed

(Cimpanu, 2020). xHelper is known as a zero-day type of malware. It takes nearly about 10 months for the
researcher to find out how it exploits smartphones and its reliable method of cleaning a smartphone

Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

42

infected by xHelper. Detection of new malicious application groups has become challenging as new stealth
techniques and encapsulation methods to evade detection tools. Existing mobile antivirus solutions need
to be improved to detect and combat highly sophisticated malware. From the review of open literature, it
found that researchers have focused on improving detection methods to detect zero-day malware in the
malicious application.

Grace et al. (2012) introduce RiskRanker in 2012 claimed as a first accurate zero-day android

malware detection. Furthermore, RiskRanker is the first system that performs large-scale security risk
analysis for zero-day malware detection at that time. They proposed a proactive scheme with a two-order
risk analysis. In the first-order analysis, RiskRanker will construct and analysis high-risk apps and medium
risk apps. They will flag high-risk apps if it carries the attack code that exploits a vulnerability in the OS
kernel or privilege daemons to obtain superuser privilege. Next, RiskRanker will report medium risk apps
if the apps secretly monetized users or upload undeniably private information to the remote server. Next,
in the second-order analysis, they will collect and correlate various signs or patterns of behaviour among
apps with malware. This was done due to mitigating the weakness from first-order analysis, which mainly
designed to handle non-obfuscated, encrypted, or dynamically changes payload malicious apps. To
demonstrate the effectiveness and RiskRanker detection accuracy, the researchers collected in total
104,874 distinct apps, from 15 different Android markets, one from the official marketplace and others
from alternative marketplaces. Based on the evaluation, RiskRanker has successfully uncovered 718
malicious apps in 29 malware families, including 322 zero-day malware. However, this type of detections
has some limitations. Their root exploitation detection scheme depends on signatures, which could only
detect known exploits and ignore encrypted or obfuscation exploit during first-order risk analysis. Further,
at second order risk analysis, their prototype only considers the javax.crypto libraries for convenient
encryption detection, while there are multiple types of libraries that could be used by malware writers to
defeat the detection method taken by RiskRanker.

On the other hand, instead of performing analysis to find malicious behaviour and compare it to

other apps to classify malware apps; Zolotukhin et al. (2014) perform an analysis of the behaviour of
opcode in benign apps. The executable file of the benign apps is analysed to extract operation code
sequences. Then, n-gram analysis was employed to the sequences of operation code to discover essential
features. Next, the behaviour model was build based on the finding of the analysis. Finally, the model was
used to make a comparison to detect malicious executable of other new files. Operational code or also
known as opcode is a machine language instruction that specifies the type of operation to be performed
(Kang et al., 2016). Opcode will reveal a significant difference between legitimate apps and malicious apps,
which is the right approach to detect malware based on executable files only. To extract features from each
of the opcode sequences, the n-gram model was applied. N-gram model is widely used in statistical natural
language processing. N-gram word model is applied to transform all opcode sequences to the n-opcodes
sequence. For example, this opcode sequence “DEC POP NOP ADD ADD ADD,” when transforming to 2-
opcodes will become” DEC POP”,” POP NOP” and ”NOP ADD” and two in the position corresponding to ”ADD
ADD”. This sequence which known as feature matrix will be analysed to find anomalies, therefore,
implemented to build a benign software model. To proof the concept, the researchers divided two sets of
files. The files were divided into a training set of 600 files in including 22 infected files and second set for a
testing set, which includes 400 files with 25 infected files. Moreover, infected files in the testing set belong
to five malwares, which is not in the training set, thus it will refer to zero-day malware apps. The motivation
is to detect the five malwares in the training set when the benign software model executed to the training
set. Once executed, the model successfully detects numbers of malware in the training sets, hence proofing
that this method could be implemented in identifying zero-day malware attacks (Zolotukhin & Hämäläinen,
2014).

This technique considers all benign opcode features and builds maximum 2-opcodes sequence; it

takes a long time to train the data set to build a benign software model. Therefore, this model is impractical
to apps with high instruction, as it will be resulting in big numbers of opcode sequences.
Gandotra et al. (2017) show that selecting features obtained from both methods help in shortening the time
taken to build a classification model thus hindering the early detection of malware. The project aims to
prove that the features selection process would help to improve model-building time without
compromising the accuracy of the malware detection system. They illustrated that features selection
benefits in shortening the time taken to build classification model, thus may help to overcome the issue
arise from Zolotukhin et al. (2014) model, but the discussion on the effectiveness of detecting zero-day
malware with features selection was vaguely discussed.

Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

43

Additionally, Tong and Yan propose a method that dynamically monitors and collects execution data
of apps to create both malware and benign pattern set. The malware detection system was done at the
server. The execution data are based on the individual system calls and sequential system calls, which are
related to the access of files and networks. If the parameters of the data were chosen properly, the detection
accuracy of the proposed method could reach up to 91.76% with FPR lower than 4%. To proof the concept
that this method could detect a new type of malware, they collect system call patterns of apps with new
malware and compare the patterns in both malicious and benign pattern sets. Furthermore, the detection
accuracy of this method could be further improved, as there is the implementation of self-learning to the
pattern sets (Tong & Yan, 2017).

However, this method does not support real-time detection due to the big data processing and new

call patterns of newly detected malware. Privacy of data extracted from the apps to the server also not
considered. The data extracted and stored were large, thus need big storage to support. There are multiple
methods taken by researchers to detect new types of malware. In addition, the method for zero-day
malware detection and analysis are still imperfect, ineffective, and incomprehensive. Since the Android
application is available not only at the official store, but there are also many security and privacy problems
persuaded. Today, malware detection mechanisms are still incapable to deal with constantly appearing
new types of neither malware, such as xHelper malware nor the existing ones, until an instant of this
malware has damaged several mobile phones. Therefore, it is important to have a new detection method
to detect malware unseen previously, in real-time environments with less consumption of resources in
terms of memory consumption, use of storage and CPU processing.

This section highlighted some challenges and issues in the perspective of detecting Android
malware. In summary, challenges and issues that should be considered as future research direction are as
follows:

i. New detection technique to detect the zero-day type of malware.
ii. New detection technique to identify mobile malware in real-time.
iii. Datasets with updated malware family for evaluating malware detection technique.
iv. New mobile malware detection technique with the clear implementation of data privacy.

Conclusion

This work provides state-of-the-art discussions on detecting and evaluating malware focusing on attacking
smartphones with Android operating system and its challenges. To do so, this paper has categorized the
type of mobile malware such as Trojan, Adware, crypto jacking, etc. This paper also highlighted most
popular and fundamental techniques usually used for detecting malware either in the smartphone that
used Android or iOS operating system which are through dynamic analysis, static analysis, and hybrid
analysis. As a side of contribution, newly type of Android malware is presented and its challenges to detect
and evaluate are (such as detection and evaluation/assessment) are addressed. In the end, this paper
suggested the need of new detection technique to detect the zero-day type of malware and detection
technique to identify Android mobile malware in real-time with a clear implementation of user’s data
privacy. Moreover, for research purposes of this fast-evolving research, the dataset of with updated
malware family also required to evaluating any new detection technique.

Reference

Al-khatib, A. A., & Hammood, W. A. (2017). Mobile malware and defending systems: Comparison study.

International Journal of Electronics and Information Engineering, 6(2), 116–123.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., & McDaniel, P.
(2018). FLOWDROID: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps. ACM SIGPLAN Notices, 49(6), 259–269.
https://doi.org/10.1145/2594291.2594299

Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., & Yang, B. (2018). Machine learning based mobile
malware detection using highly imbalanced network traffic. Information Sciences, 433–434, 346–
364. https://doi.org/10.1016/j.ins.2017.04.044

Azahari et al./ Zulfaqar J. Def. Sci. Eng. Tech. 4(1) (2021)

44

Cimpanu, C. (2019). New “unremovable” xHelper malware has infected 45,000 Android devices. ZDNet.

Cimpanu, C. (2020). There’s finally a way to remove xHelper, the unremovable Android malware. ZDNet.

Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. N. (2019). TaintDroid: An
information-flow tracking system for realtime privacy monitoring on smartphones. Proceedings of
the 9th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2010, 393–407.

Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010). Diversity in
smartphone usage. Proceedings of the 8th International Conference on Mobile Systems, Applications,
and Services, 179–194.

Gandotra, E., Bansal, D., & Sofat, S. (2016). Zero-day malware detection. 2016 Sixth International
Symposium on Embedded Computing and System Design (ISED), 171–175.
https://doi.org/10.1109/ISED.2016.7977076

Gandotra, E., Bansal, D., & Sofat, S. (2017). Zero-day malware detection. Proceedings - 2016 6th
International Symposium on Embedded Computing and System Design, ISED 2016, 171–175.
https://doi.org/10.1109/ISED.2016.7977076

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012). RiskRanker: Scalable and accurate zero-day
android malware detection. MobiSys’12 - Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, 281–293. https://doi.org/10.1145/2307636.2307663

Kang, B. J., Yerima, S. Y., McLaughlin, K., & Sezer, S. (2016). N-opcode analysis for android malware
classification and categorization. 2016 International Conference on Cyber Security and Protection of
Digital Services, Cyber Security 2016, 13–14. https://doi.org/10.1109/CyberSecPODS.2016.7502343

Lachtar, N., Ibdah, D., & Bacha, A. (2019). The Case for Native Instructions in the Detection of Mobile
Ransomware. 2(2), 26–29.

Liang, S., & Du, X. (2014). Permission-combination-based scheme for Android mobile malware detection.
2014 IEEE International Conference on Communications, ICC 2014, 2301–2306.
https://doi.org/10.1109/ICC.2014.6883666

Martinelli, F., Mercaldo, F., & Saracino, A. (2017). BRIDEMAID: An Hybrid Tool for Accurate Detection of
Android Malware. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, 899–901. https://doi.org/10.1145/3052973.3055156

McAfee. (2020). McAfee Mobile Threat Report Mobile Malware Is Playing Hide and Steal.

Schneier, B. (2019). xHelper Malware for Android. 8 November 2019.

Sigler, K., & Trustwave, S. (2018). Crypto-jacking : how cyber- criminals are exploiting the crypto-
currency boom. Computer Fraud & Security Bulletin, 2018(9), 12–14.
https://doi.org/10.1016/S1361-3723(18)30086-1

Tong, F., & Yan, Z. (2017). A hybrid approach of mobile malware detection in Android. Journal of Parallel
and Distributed Computing, 103, 22–31. https://doi.org/10.1016/j.jpdc.2016.10.012

Tung, L. (2019). Bigger than Windows, bigger than iOS: Google now has 2.5 billion active Android devices.
ZDNet.

Zolotukhin, M., & Hämäläinen, T. (2014). Detection of zero-day malware based on the analysis of opcode
sequences. 2014 IEEE 11th Consumer Communications and Networking Conference, CCNC 2014, 386–
391. https://doi.org/10.1109/CCNC.2014.6866599

