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 Advanced technology in petrochemical-based polymer has brought many benefits to 
mankind. However, the use of nonbiodegradable plastics materials for disposable 
application such as food packaging and house whole appliances are significantly 
disturbing and damaging the earth ecosystem. Polylactic acid (PLA) is a 
biodegradable plastic that is brittle. Because of this nature, PLA has a limitation in its 
usage. The common way to improve the toughness of PLA is via adding plasticizer. 
This review will provide brief account on recent developments in the synthesis of 
lactic acid (monomer of PLA) through biological route, PLA synthesis, unique 
material properties of PLA and modification of those by making copolymers and 
composites PLA absorption and degradation. 
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Introduction 
 
Advanced technology in petrochemical-based polymer has brought many benefits to mankind. However, 
the use of nonbiodegradable plastics materials for disposable application such as food packaging, house 
whole appliance and cookware are significantly disturbing and damaging the earth ecosystem (Nofar et 
al., 2019). Conventional plastics are resistant to biodegradation. The environmental impact of persistent 
plastics waste is of increasing global concern and alternative disposal methods are limited. Incineration of 
these plastic wastes always produces a large amount of carbon dioxide that contributes to global 
warming. In some cases, toxic gases such as dioxins, furans, mercury and polychlorinated biphenyls are 
also produced, which contributes to global pollution (Verma et al., 2016) . On the other hand, satisfactory 
landfill sites are also limited.  
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For these reasons, there is an urgent need to develop renewable, source-based, environmentally 
benign polymeric materials (biopolymer), especially for use in short-term packaging and disposable 
application. Such materials would not involve the use of toxic or noxious component in their 
manufacturing and could allow for composting into naturally occurring biodegradation products (Fig. 1). 
 
 

 
Fig. 1: Classification of biodegradable polymer (Avérous, 2004) 

 
Biodegradable polymers are defined as those that undergo microbially induced chain scission 

leading to the mineralization. Biodegradable polymer may not produce from bio-source only, but it can 
also be derived from petroleum source (Nakajima, 2017). The biodegradation may be due to aerobic or 
anaerobic microorganisms, biologically active processes (enzyme reactions) or passive hydrolytic 
cleavage (Shah, et al., 2008). Examples of the biodegradable polymers include polyhydroxybutyre (PHB), 
polyhydroxyvalarate (PHV), polylactic acid (PLA), polycaprolactone (PCL) and polybutylene adipate co-
terepthalate (PBAT). 
 
 
Lactic acid – An overview 
 
PLA consists of hydroxyl and a carboxyl group which easily converted to polyester through 
polycondensation reaction. PLA can be synthesised and varied in its molecular weight depending on its 
application. PLA with high molecular weight is used in the packaging industry (Jamshidian et al., 2010) 
whereas PLA with low molecular weight PLA is generally used in biomedical applications, where fast 
degradation into the human body is required (Palacio et al., 2011). Conventional condensation 
polymerization of lactic acid was a popular method to synthesised PLA. However, an organic solvent is 
used for azeotropic distillation of condensation water and the polymerization period extended will 
produces PLA with higher molecular weight.  
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Polymerization of a racemic (Fig. 2) mixture of L- and D-lactides usually leads to the synthesis of poly-DL-
lactide (PDLLA) which is not crystalline but amorphous. Subsequently, polycondensation of aqueous DL-
lactic acid will gave Mn’s up to 6500 which reported for pure L-lactide (Mehta et al., 2006; Song & 
Murphy, 2018).  
 
  

 
 
 
 
 
 
 
 
 

 
Fig. 2: Chemical structure of stereoisomer; (a) L-PLA, (b) D-PLA and (c) D,L-PLA 

 
The commonly used catalysts for PLA synthesis are shown in Table 1. As mentioned, the use of 

stereospecific catalysts can lead to heterotactic PLA which will shows different crystallinity property. As a 
result, many PLA important properties, are determined by the ratio of D to L enantiomers that exist. 
Different type of organic monocarboxylic iron complexes that used in the ring-opening polymerization of 
L-lactide were also been reported. The acetate anion as well as the iron partly, is chemically attached to 
the polymer chain, and the proposed polymerization mechanism is an anionic type of coordination 
insertion. 

  
Table 1: Different catalysts used for the production of PLA (Gupta & Kumar, 2007) 

Polymer Catalyst Solvent Molecular weight 

D, L PLA / L-PLA 
Aluminium 

Isopropoxide 
Toluene Mn. 90,000 

D-L PLA Stannous octoate Alcohols Mw < 3,50,000 

L-PLA, Stannous octoate Alcohols carboxylic acid Mn, 250,000 

L-PLA 
Stannous octoate and 

compounds of titanium 
and zirconium 

Toluene Mn = 40,000– 100,000 

D-PLA, Stannous 
trifluoromethane 

sulfonate, 
scandium(III) 

trifluoromethane 
sulfonate 

Ethanol – 

L-PLA 

D-L PLA 

L-PLA 
Mg, Al, Zn, Titanium 

alkoxides 
Methylene chloride – 

L-PLA 
Yttrium tris(2,6-di-tert 

butyl phenolate) (in 
toluene) 

ethanol 2-propanol, 
butanol, 

Mn < 25,000 

D-LPLA Zn lactate No solvent Mn = 212,000 

D-L PLA Butylmagnesium, 
Grignard reagent 

Ethers Mn < 300,000 
L-PLA 

L-PLA, 
Potassium 

naphthalenide 
THF toluene Mn < 16,000 

L-PLA 

Complexes of iron with 
acetic, butyric, 
siobutyric and 

dichloroacetic acid 

No solvent Mw = 150,000 

(a) (b) (c) 
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PLA – Monomer and Properties 
 
PLA is linear aliphatic polyester synthesized by ring-opening polymerization of lactides and which are 
typically derived from corn starch fermentation (Fig. 3). PLA also can be produced by chemical synthesis. 
There are two possible routes (Fig. 4). First was the hydrolysis of lactonitrile by strong acids, which 
provide the racemic mixture of D-and L-lactic acid. Second was the catalyzed degradation of sugars; 
oxidation of propylene glycol; reaction of acetaldehyde, carbon monoxide, and water at elevated 
temperatures and pressures; hydrolysis of chloropropionic acid and nitric acid oxidation of propylene. 
The awareness to fermentative production of lactic acid has increased due to two prospects which 
environmental friendliness and of using renewable resources instead of petrochemicals. Fermentation 
able to produce high product specificity, as it produces a desired optically pure L-(+)- or D-()-lactic acid. 
Fermentation also offers several advantages compared to chemical synthesis like low cost of substrates, 
low production temperature, and low energy consumption (Komesu et al., 2017). 
 

 
Fig. 3: PLA repeating unit 

 
 

 
Fig. 4: Chemical synthesis of lactic acid by (a) hydrolysis of lactonitrile by strong acid and (b) 

catalysed degradation of sugar. 
 
PLA has been found to be environmentally biodegradable. Lactic acid bacteria (LAB) and some 

filamentous fungi are the chief microbial sources of lactic acid. The organisms that predominantly yield 
the L isomer are Lactobacilli amylophilus, Lactobacilli bavaricus, Lactobacilli casei, Lactobacilli 
maltaromicus, and Lactobacilli salivarius. Strains such as Lactobacilli delbrueckii, Lactobacilli jensenii, or 
Lactobacilli acidophilus yield the D-isomer or mixtures of both (Nampoothiri et al., 2010). Biodegradation 
of PLA occur through two step processes that begin with the high molecular weight polyester chain 
hydrolysed to lower molecular weight oligomers under an appropriate temperature and moisture 
environment. In the second step, microorganisms convert these low molecular weight components to 
carbon dioxide, water and humus (Jiang et al., 2006). 

 

(a) 

(b) 
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Some of factors affecting PLA properties are molecular weight, annealing time, component isomers 
and processing temperature. Poly-L-lactide (PLLA) is the product resulting from polymerization of L-
lactide. The glass transition temperature and melting temperature for PLLA were recorded between 50-
80 oC and 173-178 oC respectively. PLLA has a crystallinity of around 37%. The crystallization ability of 
polylactides decreases with chain stereoregularity and below 43% of optical purity crystallization is no 
longer possible (Sarasua et al., 1998). Because of that, polylactides and its isomers PLLA and poly D-
lactide) (PDLA) show semi crystalline manners. Nevertheless, diverse polymerization methods were 
reported to rearrange lactyl structural unit chain to modifies the properties of polylactides. There’s no 
positive result as both amorphous and crystalline polylactides used to show brittle behavior at room 
temperatures (Farah, Anderson, & Langer, 2016). Brittle mechanical behavior of polylactides was led 
from crystallization in the form of stereo complex  (Zhang et al., 2018).  

 
The reason can be reflected to picture PLA density. An amorphous PLLA has a density and  

crystalline value of 1.248 g ml-1 and 1.290 g ml-1 respectively (Farah et al., 2016). The amorphous PLA is 
soluble in organic solvents such as tetrahydrofuran (THF), chlorinated solvents, benzene, acetonitrile, and 
dioxane. This is different from crystalline PLA which is only soluble in chlorinated solvents and benzene 
at elevated temperatures (Garlotta, 2002). 

 
In general, standard grade PLA has high modulus (3 GPa) and strength (50-70 MPa) which are 

comparable to that many petroleum-based plastics. Table 2 listed the common properties of PLA. As 
mentioned earlier, PLA is brittle and has a low toughness as well as physical aging problem that limits its 
application. The brittleness of PLA can be modified by copolymerization of lactides with another 
monomer such as caprolactone (Sangeetha et al., 2018). Increasing the caprolactone units by a few 
percent decreased the modulus but substantially increased the elongation. 
 

 Table 2: Physical properties of PLA 

Physical properties Value 

Mechanical properties Tensile strength at yield (Mpa) 53 

Elongation at yield (%) 10–100 

Flexular modulus (Mpa) 350–450 

Melting point 120–1704 

Melt flow rate (g/10 min) 4.3–2.4 

Density (g/cm3) 1.25 

Yellowness index 20–60 

Haze 2.2 

 
 
PLA - Improvement and consequences 
 
Polymer blending (Fig. 5) is a convenient route for the development of new polymeric materials, and able 
to yield materials with property profiles superior to those of the individual components (Müller et al., 
2017). This method is usually cheaper and less time-consuming for the creation of polymeric materials 
with new properties than the development of new monomers and/or new polymerization routes. An 
additional advantage of polymer blends is that the properties of the materials can be tailored by 
combining component polymers and changing the blend composition. The hard and brittle mechanical 
properties of PLA limit its development and practical application; therefore, several modifications have 
been proposed to improve processing and mechanical properties, such as copolymerization, 
plasticization, and polymer blending (Farah et al., 2016). 
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Fig. 5: Schematic pathway for polymer blending 

 
There are three methods for blending polymer. Firstly, is the solution/precipitation, second is the 

solution/casting and lastly is the reactive blending (melt blending) (Fig. 6). However, the blends that have 
been prepared by different processing methods exhibited different properties (Imre & Pukánszky, 2015). 
For example, miscibility and phase behaviour of PLA/poly methyl methacrylate (PMMA) blends prepared 
by solution/precipitation has resulted in phase separation blends. Nevertheless, samples (PLA/PMMA) 
prepared by solution/casting did not exhibit phase separation (Zhang et al., 2003). Solution casting and 
melt blending was the most popular ways in producing polymer blends. From these three methods of 
blending, the blends can be distinguished into three different types: completely miscible blends, partially 
miscible blends and fully immiscible blends (Aid et al., 2017).  
 

 
Fig. 6: Methods for polymer blending 

 
Blending PLA with the presence of other polymers may be more practical and economical to obtain 

products with properties that are not currently attainable. All these years, only a few miscible blends have 
been identified. Most polymer mixtures form immiscible blends since adhesion between the polymer 
components is poor in certain blends. These blends are usually useless unless they can be compatibilized. 
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A common method to compatibilized and increase the processability and lower the initial tensile 
modulus (a decrease in stiffness) of a polymer is by using plasticizers during processing operations 
(Davallo & Pasdar, 2012; Mekonnen et al., 2013; Verbeek & Berg, 2010). Polymers are in principle can be 
used as polymeric plasticizers to change the physical properties of PLA (Immergut & Herman, 1965; Yasin 
& Tighe, 1992). Blending PLA with other polymers can modify the properties of PLA to the desire 
properties. For example, blending PLA with a rubbery type polymer formed non-brittle and tough blends 
(Nagarajan et al., 2016). It is often to get immiscible blends after two polymers were blended (Pivsa-art et 
al., 2016).  

 
Many types of chemicals are studied to act as a plasticizer for PLA. Citrate esters (Martin & Ave, 

2001) poly(ethylene glycol) (PEG), glucose monoesters and partial fatty acid esters (Hoffman, 2012), 
poly(vinyl alcohol) (PVA) (Chumeka & Tanrattanakul, 2013), polyethylene (PE) (Anderson & Hillmyer, 
2004), polycaprolactone (PCL) (Liao & Wu, 2009), poly(butylene adipate-co-terephthalate) PBAT (Jiang 
et al., 2006) and polybutylene succinate adipate (PBSA) (Lee & Lee, 2005) were used to improve the 
flexibility and impact resistance of PLA.   

 
Mechanical studies indicate that incorporated plasticizer changed the PLA nature from rigid to 

ductile (Marina et al., 2017), however will reduced the tensile strength (stress needed to break the 
sample, (Nikiforov et al., 2017) and tensile modulus (relative stiffness of a material, (Liao & Wu, 2009)) as 
compared with the origin PLA. This indicated incompatibility between the constituent polymers in the 
blend system which resulted in phase separation and poor interfacial adhesion between polymers (Abay 
et al., 2016; Broz et al., 2003). 
 

Dynamic mechanical analysis (DMA) measure the response of a given material to cyclic 
deformation as a function of temperature. Storage modulus (G’), is corresponding to elastic response to 
the deformation, (measurement of the ability of material to store energy) whereas the loss modulus (G”), 
is corresponding to the plastics response to the deformation (ability of material to dissipate energy by 
flow) (Sinha et al., 2003). The storage modulus measures the stiffness of polymeric materials under the 
dynamic stress and strain condition while the loss modulus indicates the viscous behavior of the 
polymeric materials (Aziz & Ansell, 2004). G’ is measured by quantifying the resistance to deformation 
phase with applied stress whereas G” is determined from the components of the resistance that is out of 
phase.  

 
A direct proof of polymer miscibility can be obtained by observing the behavior of the Tg with the 

blend’s composition. One unusual property of immiscible blends is that one made from two amorphous 
polymers has two glass transition temperatures or Tgs (Thirtha, Lehman, & Nosker, 2006). Since the two 
components are phase separated, they retain their separate Tgs. If two Tgs are found, then the blend is 
immiscible. If only one Tg is observed, then the blend is likely to be miscible (Shi et al., 2013). The 
mechanical properties of this immiscible blend are going to depend on those of polymers that were major 
component, because the polymer phase is absorbing all the stress and energy when the material is under 
load (Deleo & Velankar, 2008; Yang et al., 2013). In addition, the immiscible blend is going to be weaker 
than its sample of pure polymer  (Liu et al., 2018). The miscibility of a polymer blends is confirmed using 
SEM.  

 
The SEM morphological studies of immiscible blend will indicate the existence of two-phase 

structure. Neat PLA had no necking in the tensile test showed a smooth longitudinal fractured surface 
without visible plastic deformation (Fig. 7). The observation is the same as several other researches 
(Jiang et al., 2006).   
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Fig. 7: PLA surface morphology 

For immiscible blend, the debonding of the round particles from the PLA matrix under tensile 
stress is clearly observed (Osman et al., 2017). Note that the PLA samples are pulled apart as the 
appearances of cavities indicating the low adhesive properties between polymers (Fig. 8). These cavities 
were formed during tension when the stress was higher than the bonding strength at the interface 
between the polymer inclusions and because there was no sufficient interfacial adhesion (weak 
interaction) between polymers (Jiang et al., 2006; Osman et al., 2017). 

 

 
Fig. 8: PLA composite morphology (PLA was pulled apart) (Osman et al., 2017) 

 
Thermal behavior of blends can be referred to cold crystallization temperature (Tc), melting 

temperature (Tm) and glass transition temperature (Tg). Crystallinity of blends is calculated as follows: 
(Ting et al., 2010). 

 
Xc = (∆Hm/(∅PLA)/∆Hm∗ × 100%      (1) 

Where,   
f = the weight fraction of the dispersed phase in the blends, 
∆Hm = the melting enthalpy  
(J/g) that was calculated from the fusion peak in the DSC curve and 
∆Hm * is the heat of fusion for completely crystallized PLA (93.1 J/g). 
 

The increased crystallinity might be caused by plasticizer nucleation and degradation of PLA 
polymer chains. It has been reported that plasticizer can acts as nucleating agent for crystallization and 
molecular weight affects the crystallization of polymers. Generally, low molecular weight polymers have 
high crystallinity and high crystallization rate. In this pure blend case, both factors, that is, nucleation and 
lower molecular weight might be the cause of increased crystallinity. This result suggests the presence of 
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moisture decreased the molecular weight of PLA due to hydrolysis resulting in lower mechanical 
properties (Restrepo et al., 2018). 

 
The water uptake of polymer may affect their mechanical properties, degradability, and 

dimensional stability. Water exposure and uptake may decrease the life of a polymer due to hydrolysis 
and micro crack formation (Correlo et al., 2007). In industry, one must know about the water absorption 
of polymer before determining their applications. In certain applications, some degree of water resistance 
may be desirable. Therefore, the water absorption of polymer was determined. Polymer matrix 
containing more polar group tends to absorb more moisture (hydrophilic character) (Kushwaha & 
Kumar, 2009). Higher water absorption property was observed in polymer blend consists of polymer that 
has low crystallinity (amorphous polymer) property than PLA (Kun & Marossy, 2013). This is an 
indication that the blend has the increased difficulty in forming polymer chain arrangements and causing 
poor adhesion with the hydrophobic PLA (Wu & Liao, 2007).  

 
Fig. 9: Comparison of crystal and amorphous structures in water uptake process 

 
Biodegradability can be determined by weight loss of the samples after contact with compost 

and/or soil. Generally, fungus biodegradation of biopolymers produces carbon dioxide, water and other 
harmless materials (Wu & Liao, 2005). The biodegradation of PLA has been investigated mostly in 
compost or soil environments (Qi et al., 2017). PLA is also ingested by animals and humans. Its 
application in medicine is widely studied and extensively developed. During the period of biodegradation 
test, the diffused water in polymer sample, will cause swelling and enhancing biodegradation (Liao & Wu, 
2009). Furthermore, the hydrophilic–hydrophobic character of synthetic polymers greatly affects their 
biodegradability. A polymer containing both hydrophobic and hydrophilic segments seems to have a 
higher biodegradability than those polymers containing either hydrophobic or hydrophilic structures 
only (Ning et al., 2018)  
 
 
Innovation 
 
PLA meets many requirements as a packaging thermoplastic and is suggested as a commodity resin for 
general packaging applications. When plasticized with its own monomers, PLA becomes increasingly 
flexible (Ljungberg et al., 2005; Martin & Ave, 2001) so that a continuous series of products that can 
mimic PVC, LDPE, LLDPE, PP, and PS can be prepared. Degradation is increased with increasing 
plasticizer (Bhasney et al., 2017; Li et al., 2018), and shelf life is favoured by decreasing plasticizer 
content and/or orientation (Sinclair, 1996; Tawakkal et al., 2014) . Because it is biodegradable, it can also 
be employed in the preparation of bioplastic, useful for producing loose-fill packaging, compost bags, food 
packaging, and disposable cutlery (Nofar et al., 2019). In the form of fibres and nonwoven textiles, PLA 
also has many potential uses, for examples upholstery, disposable garments, awnings, feminine hygiene 
products, and nappies (Adomavičiūtė et al., 2015; Avinc & Khoddami, 2009; Gürcüm & Üner, 2015). PLA 
has been used as the hydrophobic block of amphiphilic synthetic block copolymers that is used to form 
the vesicle membrane of polymerases (Noack et al., 2018; Oh, 2011). 

PLA has been suggested to produce horticultural materials to reduce the environmental problem 
as a large quantity of plastic is used in this sector (Oliveira et al., 2014). PLA is also used as a matrix for 
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controlled release of herbicides (Roy et al., 2014; Šopík et al., 2019). Earlier, a study was conducted to 
evaluate the impact of PLA in growth stimulation and yield improvement (Bidyarani et al., 2016; 
Nampoothiri et al., 2010). Previous greenhouse study confirmed that both lactide and PLA have increased 
the soybean leaf area, pod number, bean number and bean and plant dry weight (Chang et al., 1996). This 
study suggests that the use of PLA as an encapsulation matrix for herbicides could reduce environmental 
impact and improve weed control and at the same time increase the yield of soybeans through releasing 
of plant growth stimulants in the form of oligomeric or monomeric lactic acid.  

 
An application of PLA film precursor by using isothermal polarization method was used to made 

eletret (Galikhanov et al., 2016; Guzhova et al., 2016b; Guzhova & Galikhanov, 2015). PLA eletret 
demonstrate charge storage capability (Gao et al., 2016; Guzhova, et al., 2016a) and forbid charge absence 
through the volume (Nakagawa et al., 2004; Zeng et al., 2015). PLA are widely used in variety of 
application such as transistor, filter and transducer (Urbaniak-Domagala 2013).  
 
 
Conclusion 
 
Research on a recyclable and degradable polymer is very important to environment. PLA offers a possible 
material which can replaced nonbiodegradable polymers. This is because of its promising property such 
as did not produces toxic fume if incinerated, composable in soil and comparable physical properties with 
another petroleum-based polymer. Even though PLA devours many limitations on processing due to its 
material properties, researchers have worked tirelessly to find a method that can overcome these 
problems. Some of the methods that have been discovered to overcome PLA limitations are through 
blending PLA with other polymers, making micro and nanocomposites of PLA, coating with high barrier 
materials, and with polymer modification. 
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